Discipline:	Semester: 6th	Name of the Teaching Faculty:
Electrical Engg.	Sem	Er. Satish Ranjan Dhar & Satyakam Mahapatra
Subject: Th3. Control	No of Days/ Per week class allotted: 5Classess P/W	Semester From Date: 13/02/2023 To Date: 25/05/2023 No. Of Weeks: 15
System Engineering	(75)	
WEEK	CLASS DAY	THEORY/PRACTICAL TOPICS
1 st	1 st	1.FUNDAMENTAL OF CONTROL SYSTEM 1.1. Classification of Control system
	2 nd	1.2. Open loop system & Closed loop system and its comparison
	3 rd	Previous class continue
	4 th	1.3. Effects of Feed back
	5 th	Doubt clear previous class
	1 st	1.4. Standard test Signals(Step, Ramp, Parabolic, Impulse Functions)
	2 nd	Previous class continue
2^{nd}	3 rd	1.5. Servomechanism
	4 th	2.MATHEMATICAL MODEL OF A SYSTEM 2.1. Transfer Function & Impulse response
	5 th	Doubt clear class
	1 st	2.2. Properties, Advantages & Disadvantages of Transfer Function
	2^{nd}	2.3. Poles & Zeroes of transfer Function
3 rd	3 rd	Continue Previous class
	4 th	2.4. Simple problems of transfer function of network.
	5 th	Solve Simple problems of transfer function
	1 st	2.5. Mathematical modeling of Electrical Systems(R, L, C, Analogous systems)
4 th	2^{nd}	Doubt clear class
	3 rd	3.CONTROL SYSTEM COMPONENTS 3.1. Components of Control System
	4 th	Previous class continue
	5 th	Doubt clear class
$5^{ m th}$	1 st	3.2. Gyroscope, Synchros, Tachometer
	2 nd	DC servomotors, Ac Servomotors
	3 rd	Doubt clear class
	4 th	4.BLOCK DIAGRAM ALGEBRA & SIGNAL FLOW GRAPHS

		4.1. Definition: Basic Elements of Block Diagram
	5 th	4.2. Canonical Form of Closed loop Systems
6 th	1 st	Doubt clear class
	2 nd	4.3. Rules for Block diagram reduction
	3 rd	4.4. Procedure for of Reduction of Block Diagram
	4 th	4.5. Simple Problem for equivalent transfer function
	5 th	Doubt clear class with Solve problems for equivalent transfer function
7 th	1 st	4.6. Basic Definition in Signal Flow Graph & properties
	2 nd	4.7. Construction of Signal Flow graph from Block diagram
	3 rd	4.8. Mason's Gain formula
	4 th	4.9. Simple problems in Signal flow graph for network
	5 th	Doubt clear class with Solve problems in Signal flow graph for network
	1 st	5.TIME RESPONSE ANALYSIS.5. 1 Time response of control system.
	2 nd	5. 2 Standard Test signal.5.2.1. Step signal,5.2.2. Ramp Signal
8 th	3 rd	5.2.3. Parabolic Signal5.2.4. Impulse Signal
	4 th	5. 3 Time Response of first order system with:5.3.1. Unit step response5.3.2. Unit impulse response.
	5 th	Doubt clear class
9 th	1 st	5. 4 Time response of second order system to the unit step input.5.4.1. Time response specification.
	2 nd	5.4.2. Derivation of expression for rise time, peak time, peak overshoot, settling time and steady state error.
	3 rd	5.4.3. Steady state error and error constants.
	4 th	5. 5 Types of control system.[Steady state errors in Type-0, Type-1, Type-2 system
	5 th	Revision class
10 th	1 st	5.6 Effect of adding poles and zero to transfer function.

	2 nd	5.7 Response with P, PI, PD and PID controller
	3 rd	Doubt clear class
	4 th	1.ANALYSIS OF STABILITY BY ROOT LOCUS TECHNIQUE.ANALYSIS OF STABILITY BY ROOT LOCUS TECHNIQUE. 6.1 Root locus concept.
	5 th	Doubt clear class
11 th	1 st	6.2 Construction of root loci.
	2 nd	Previous class continue
	3 rd	6.3 Rules for construction of the root locus.
	4 th	Previous class continue
	5 th	Revision class
	1 st	6.4 Effect of adding poles and zeros to G(s) and H(s).
	2 nd	Previous class continue
12 th	3 rd	Doubt clear previous class
	4 th	7. FREQUENCY RESPONSE ANALYSIS.7 .1 Correlation between time response and frequency response.
	5 th	7 .2 Polar plots.
	1 st	7.3 Bode plots.
	2 nd	7.4 All pass and minimum phase system.
13 th	3 rd	Revision class
	4 th	7.5 Computation of Gain margin and phase margin.
	5 th	Previous class continue
	1 st	7.6 Log magnitude versus phase plot.
	2 nd	Doubt clear class
14 th	3 rd	7.7 Closed loop frequency response.
	4 th	8.NYQUIST PLOT 8.1 Principle of argument.
	5 th	8.2 Nyquist stability criterion.
	1 st	8.3 Niquist stability criterion applied to inverse polar plot.
15 th	2 nd	8.4 Effect of addition of poles and zeros to G(S) H(S) on the shape of Niquist plot.

3 rd	8.5 Assessment of relative stability.
4 th	8.6 Constant M and N circle
5 th	8.7 Nicholas chart